Silicon nitride based plasmonic components for CMOS back-end-of-line integration.
نویسندگان
چکیده
Silicon nitride waveguides provide low propagation loss but weak mode confinement due to the relatively small refractive index contrast between the Si₃N₄ core and the SiO2 cladding. On the other hand, metal-insulator-metal (MIM) plasmonic waveguides offer strong mode confinement but large propagation loss. In this work, MIM-like plasmonic waveguides and passive devices based on horizontal Cu-Si₃N₄-Cu or Cu-SiO₂-Si₃N₄-SiO₂-Cu structures are integrated in the conventional Si₃N₄ waveguide circuits using standard CMOS backend processes, and are characterized around 1550-nm telecom wavelengths using the conventional fiber-waveguide-fiber method. The Cu-Si₃N₄(~100 nm)-Cu devices exhibit ~0.78-dB/μm propagation loss for straight waveguides, ~38% coupling efficiency with the conventional 1-μm-wide Si₃N₄ waveguide through a 2-μm-long taper coupler, ~0.2-dB bending loss for sharp 90° bends, and ~0.1-dB excess loss for ultracompact 1 × 2 and 1 × 4 power splitters. Inserting a ~10-nm SiO₂ layer between the Si3N4 core and the Cu cover (i.e., the Cu-SiO2(~10 nm)-Si₃N₄(~100 nm)-SiO2(~10 nm)-Cu devices), the propagation loss and the coupling efficiency are improved to ~0.37 dB/μm and ~52% while the bending loss and the excess loss are degraded to ~3.2 dB and ~2.1 dB, respectively. These experimental results are roughly consistent with the numerical simulation results after taking the influence of possible imperfect fabrication into account. Ultracompact plasmonic ring resonators with 1-μm radius are demonstrated with an extinction ratio of ~18 dB and a quality factor of ~84, close to the theoretical prediction.
منابع مشابه
CMOS-Compatible Deposited Materials for Photonic Layers Integrated above Electronic Integrated Circuit
Silicon photonics has generated an increasing interest in recent years mainly for optical communications optical interconnects in microelectronic circuits or bio-sensing applications. The development of elementary passive and active components (including detectors and modulators), which are mainly fabricated on the silicon on insulator platform for CMOS-compatible fabrication, has reached such ...
متن کاملFabrication of thick silicon nitride blocks for integration of RF devices
Introduction: The enormous growth of wireless and portable applications has led to strong demands for high-performance monolithic low-cost passive components in RF and microwave integrated circuits (ICs). However, some traditional microwave passive components such as transmission lines and filters are difficult to integrate on the same chip with the RF and microwave circuits owing to the high s...
متن کاملFabrication of thick silicon nitride blocks for integration of RF devices - Electronics Letters
Introduction: The enormous growth of wireless and portable applications has led to strong demands for high-performance monolithic low-cost passive components in RF and microwave integrated circuits (ICs). However, some traditional microwave passive components such as transmission lines and filters are difficult to integrate on the same chip with the RF and microwave circuits owing to the high s...
متن کاملElectric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide.
We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitri...
متن کاملCMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration
Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metalinsulator-Si-insulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 21 20 شماره
صفحات -
تاریخ انتشار 2013